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ON THE NON-LINEAR VIBRATION OF THE VON
KARMAN SQUARE PLATE BY THE IHB METHOD
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Non-linear phenomena in the vibration of a square plate subject to lateral forcing are
studied. Starting from the dynamic analogue of the von Kármán partial differential
equations that govern the motion of the plate, a system of second order non-linear ordinary
differential equations are derived. Using the IHB method, a numerical bifurcation analysis
is performed in which interaction between spatial modes is examined. A number of
diagrams of resonance curves and bifurcation are presented.
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1. INTRODUCTION

Most of the studies of vibrations of thin elastic plates, such as those by Kung and Pao
[1], Kisliakov [2] and Pasic and Herrmann [3], are concerned with problems in which only
one spatial mode is strongly excited. Sridhar, Mook and Nayfeh [4, 5] and Yang and
Sethna [6] represent the motion with more than one mode to consider the effect of internal
resonance and the modal interactions. In references [4, 5] the natural frequencies satisfy
special relationships, while in reference [6] the equations are solved by the method of
averaging. In the present study, we also consider the vibration with two fundamental
modes but solve it numerically using the IHB method. Some features of bifurcation are
shown to exist in this vibratory problem.

Among model equations for non-linear vibrations of plates, we study those given by Chu
and Herrmann [7] which are the dynamic analogue of the von Kármán partial differential
equations of the plate. To represent the motion of a thin square plate subject to a
symmetrical sinusoidal lateral excitation, two fundamental modes are involved. With the
aid of a symbolic computational tool such as MathematicaTM, two non-linear ordinary
differential equations can be derived through the Galerkin method. Then the IHB method
is employed to solve the equations. The stability of the solution is diagnosed using
Floquet’s theory [8]. For references on the IHB method and stability diagnosis refer to
references [9, 10]. One graph of resonance curves (response versus excitation frequency)
and two of response curves (response versus excitation force) are presented with some
discussion.

2. DERIVATION OF THE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

Consider a flat square plate of thickness h and edge length a. All of the edges are simply
supported. The plate are subjected to a lateral excitation force normal to the plate and
a constant in-plane stress along the edges. A sketch of the system being studied is shown
in Figure 1.

The governing equations of an isotropic plate derived by Chu and Herrmann [7] are
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where u0 and v0 are the displacements in the mid-plane of the plate in the x- and y-
directions respectively, w0 is the displacement in the plane normal to the mid-plane and
E, n and r are the modulus of elasticity, the Poisson ratio and the density, respectively,
c is the coefficient of lateral viscous damping and q0 is the lateral excitation.

We express the governing equations and the membrane forces in the non-dimensional
form

uzz + d1uhh + d2vzh =−wz(wzz + d1whh)− d2whwzh , (2a)

vhh + d1vzz + d2uzh =−wh(whh + d1wzz)− d2wzwzh , (2b)
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Figure 1. A sketch of the square plate system being studied.
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z= px/a, h= py/a, t=vt,

where
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We further assume that the lateral load is distributed symmetrically and sinusoidally,
so that the related spatial modes are effectively excited. Taking these into account, we
choose the first two fundamental orthogonal mode shapes to capture the motion and study
their interaction. Thus a solution of w in equations (2) is assumed to be

w= z1 sin z sin h+ z2 sin 3z sin h, z1 = z1(t), z2 = z2(t), (4)

where z1 and z2 are the amplitudes of the modes, say (1–1) and (3–1) respectively and z

and h range from 0 to p.
Substituting equation (4) into equation (2a, b), u and v can be computed with the aid

of a symbolic computational tool, to give

u=A1 sin 2z+A2 sin 2z cos 2h+A3 sin 4z+A4 sin 4z cos 2h

+A5 sin 6z+A6 sin 6z cos 2h

v=A7 sin 2h+A8 cos 2z sin 2h+A9 cos 4z sin 2h+A10 cos 6z sin 2h, (5)

where the Ai are the polynomials of z1 and z2 listed below:

A1 = z1{(n−1)z1 − (6+2n)z2}/16, A2 = z1(4z1 +16z2 +8nz2)/64,

A3 = (−3+ n)z1z2/16, A4 = (19− n)z1z2/100, A5 = (−9+ n)z2
2/48, A6 =3z2

2/16,

A7 = (−z2
1 + nz2

1 − z2
2 +9nz2

2)/16, A8 = z1(4z1 −16z2 +8nz2)/64,

A9 = (29− n)z1z2/200, A10 = z2
2/16.

If constant in-plane stresses Nx and Ny are taken into account, the displacement
functions u and v should be modified to be [11]

u:Bz+ u, v:Ch+ v, (6)

where B and C are constants to be determined by equation (3) with modified u and v in
equation (6) and assumed w in equation (4). Thus we have
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By substituting the displacement functions given in equations (4) and (6) into equation
(2c), and using the Galerkin method, two coupled non-linear second order ordinary
differential equations of independent variable t are obtained, as
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Figure 2. The response =zi = versus the excitation frequency V at three different excitation amplitudes f= f1 = f2.

a12 =
753
100

−
21n

4
−

630n2

50
, a13 =−

45(1− n)
8

+
9n2

4
,

k2 =100+
12(1− n2)a2

p2Eh3 (9Nx +Ny), a21 =
369
4

+
27n

4
−

123n2

2
,

a22 =
753
100

+
51n

4
−

639n2

50
, a23 =−

3
2

−
3n

4
+

3n2

4
,

and q1(t) and q2(t) are the amplitudes of the mode sin z sin h and the mode sin 3z sin h

of the lateral excitation q respectively.

3. SOLVING THE EQUATIONS BY THE INCREMENTAL HARMONIC
BALANCE (IHB) METHOD

Among the methods of solving ordinary differential equations, the IHB method is
especially effective in evaluating the steady state periodic solution. It is capable of tackling
highly non-linear equations. It lends itself to numerical bifurcation analysis, and is a
systematic approach in examining bifurcations, such as the fold, the period one bifurcation
and the period two bifurcation.

For an excitation of period T acting on the plate, that is, q(t)= q(t+T), the response
is also periodic, since the system now concerned is non-conservative. However, the period
of the response may not be T but an integral multiple m of T. Thus we assume the
responses in the following form:

zk =
a0

k

2
+ s

a

i=1 $ai
k cos

it
m

+ bi
k sin

it
m% , k=1, 2.

With this assumed solution and using the Galerkin method, the system of ordinary
differential equations are discretized into a system of non-linear algebraic equations, and
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then linearized using the Newtonian method. Since the solution evaluated by the IHB
method is either stable or unstable, a stability checking of the periodic solution can be
achieved by Floquet’s theory [8]. With the aid of the arc-length method [12], the response
curves can be traced out in a more systematic manner and several types of bifurcation can
be distinguished. The detailed procedure of the IHB method and stability checking are
documented in references [9, 10].

4. NUMERICAL EXAMPLE

To examine the vibration behaviour, we take a steel plate as an example. Since in the
present study we have only used two modes to represent the displacement w, a qualitative
measure of the response is expected. More modes should be taken into account for
quantitative results. The parameters of the plate are as follows: density 7850 kg/m3,
modulus of elasticity 200 GPa, Poisson ratio 0·3, coefficient of damping m=0·046, length
1 m, thickness 0·01 m. We take the two boundary in-plane compressive stresses to be equal,
i.e., Nx =Ny , and of such value that k1 equates say, 0·576. For the excitation we consider
that q1 = f1 cos t and q2 = f2 cos t, where fi are force amplitudes. With the parameters
defined above, the equations (8) are rewritten as

4V2z̈1 +2V(0·046)ż1 +0·576z1 +2·34z3
1 +4·8048z1z2

2 −3·735z2
1z2 = f1 cos t,

4V2z̈2 +2V(0·046)ż2 +82·88z2 +88·74z3
2 +10·2048z2

1z2 −1·6575z3
1 = f2 cos t. (9)

In equation (9) we take V and f to be varying parameters. The results are depicted in
Figures 2–4. Figure 2 is a resonance graph of =zi = against V for three different f ’s, in which
=zi ==za2

0/4+aa2
i +ab2

i and f= f1 = f2. The solid curves represent the stable motion and
the dotted curves correspond to the unstable vibration. The points of vertical tangencies
at which change of stability occurs are points which give rise to a jump phenomenon

Figure 3. Response zi(t=0) versus the excitation amplitude f= f1 but f2 =0 with excitation frequency
V=1·1.
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Figure 4. The response zi(t=0) versus the excitation amplitude f= f1 but f2 =0 with excitation frequency
V=1·2.

commonly found in non-linear vibratory elastic systems. According to the terminology
suggested by Golubitsky and Schaeffer [13], this is a hysteresis. Within this specified range
of f, it can be found that around V=2 the (3–1) mode amplitude z2 is small when
compared with the (1–1) mode amplitude z1 but is not negligible. Away from V=2 each
mode amplitude is dominant over another. From this observation it can be implied that
the two mode amplitudes have significant interaction when the excitation frequency is near
the fundamental frequency within the specified range of f. Therefore our further
investigation will concentrate on the system excited by force with frequency close to the
fundamental frequency.

In Figure 2 we have assumed that f1 = f2 = f, so that both of the spatial modes are
excited by their corresponding excitation. Instead of letting f= f1 = f2, we set f1 = f and
f2 =0 so as to observe the interaction of the two modes excited by the force of mode (1–1)
component only. The results of zi(t=0) against f are shown in Figures 3 and 4 for a fixed
V=1·1 and 1·2 respectively. It is observed (Figure 3) that when the force amplitude f is
less than 0·5, z2 is negligibly small. As f increases, there are folds and period one
bifurcation, through which the periods of the response remains unchanged. These are
indicated on the graph by name: a cross with a unit circle shows the direction in which
the eigenvalue of the transformation matrix is escaping unity. For instance, folds and
period one bifurcations have an eigenvalue going away from unity with a value of +1.
To distinguish between these two cases, readers can refer to references [9, 10]. At about
f=0·5, there is a fold acting significantly on z1, but not so on z2, by which z1 changes from
−1 to 2, while a fold at f=2·5 affects z2 more than z1. Hence, this seems to suggest that
both mode amplitudes interact significantly with each other. A further increase in f will
produce a period one bifurcation at f=3·3 and a fold again at f=5·5. One can also note
that z1 increases with f above 8 but z2 remains more or less constant. In Figure 4 the curves
are similar to those in Figure 3 qualitatively, except that the fold at f=2·5 vanishes and
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Figure 5. The phase diagram of response z1 near bifurcation B1.

a period two bifurcation appears at F=9·5, through which not only the magnitude of the
response changes but also the period of the response is doubled.

The phase portraits of the system near the bifurcation points in Figure 4 are shown in
Figures 5–8 to illustrate its dynamical trajectory. Near bifurcation point B1, both the
response components z1 and z2 in Figures 5 and 6 are symmetrical about the origin. Since
B1 is a symmetry breaking point, the symmetry of the phase diagram is preserved before
this point, but vanishes after that. The succeeding bifurcation point following B1 is the
period doubling bifurcation point B2. Two phase diagrams of its response components are
delineated in Figures 7 and 8. It is noted easily that the symmetry about the origin of the
diagrams has already broken totally, and the shapes are distorted considerably from their
corresponding ones in Figures 5 and 6. After this point, the responses of the double period
are observed.

Figure 6. The phase diagram of response z2 near bifurcation B1.
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Figure 7. The phase diagram of response z1 near bifurcation B2.

If attention is paid only to the interaction between the first two spatial modes being
excited dominantly, the Galerkin spatial discretization is inferred to render the modal
interaction relation between the modes being considered. Numerical integration methods
are then applied to the reliable discretized system. The same results as those of the IHB
method are obtained within the excitation range. It is evident that the results from the IHB
method can reveal the actual behaviour of the system provided that the Galerkin method
is appropriate for the spatial discretization.

5. CONCLUDING REMARKS

With the use of the Galerkin method and the IHB method, the vibration phenomena
of a thin square plate governed by von Kármán equations are investigated. More than one
spatial mode to fit the motion is involved, so that modal interactions are taken into account

Figure 8. The phase diagram of response z2 near bifurcation B2.
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qualitatively. Cases in which one mode or both are excited strongly are considered.
Especially in the former case although only the fundamental mode is motivated, both mode
amplitudes are excited considerably, and significant modal interaction and bifurcation
features are discerned. Further research could be undertaken to consider the vibration of
a rectangular plate with many spatial modes to capture the motion.
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